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The establishment of chemical equilibrium in a system with a reversible first order reaction is 
characterized in terms of the distribution of first passage times for the state of exact chemical 
equilibrium. The mean first passage time of this state is a linear function of the logarithm of the 
total number of particles in the system. The equilibrium fluctuations of composition in the system 
are characterized by the distribution of the recurrence times for the state of exact chemical equi­
librium. The mean recurrence time is inversely proportional to the square root of the total number 
of particles in the system. 

The composition of a closed isothermal system in which an elementary chemical 
reaction takes place is described by an integer-valued random variable - the number 
of particles (atoms, molecules, radicals) of one of reacting components and the change 
in composition can be modelled as the Markov stochastic process 1

,2. Chemical 
equilibrium in a set of systems with the same initial number of reactant particles 
is characterized by the stationary distribution of the number of reactant or product 
particles. This distribution determines not only the limiting average equilibrium 
composition of the system (denoted here as the state of exact chemical equilibrium) 
which the actual average composition approaches asymptotically in time but also 
the equilibrium fluctuations reflecting the dynamics of reaction in the vicinity of equi­
librium. As equilibrium system we can consider such a system whose composition 
lies in the band of equilibrium fluctuations surrounding symmetrically the state 
of exact chemical equilibrium, and the time interval in which the system reaches the 
boundary of this band can be considered as the time necessary to establish chemical 
equilibrium3 • The recently studied calculation procedure of this time starts from the 
definition of width of this band of fluctuations (in terms of: 1) the standard deviation 
in composition in a stationary state, 2) the relaxation of the mean value of the state 
position indicator and 3) the standard deviation of the reaction entropy in the vicinity 
of equilibrium) and from the calculation of the time in which the mean number 
of particles in the system reaches the boundary of this band3

,,,,. 

The time necessary for establishing the chemical equilibrium can be, however, 
defined more exactly as the mean first passage time for the state .of exact chemical 
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equilibrium. In this work, an approximate calculation of thIs quantity is proposed 
for the simplest chemical reaction - a reversible first order reaction with the unit 
equilibrium constant. Moreover, the distribution of the recurrence times for the 
state of exact chemical equilibrium is derived; this characterizes the equilibrium 
fluctuations of composition. The treatment is based on the usual postulates of sto­
chastic theory of chemical reactions2 which represents the reaction as a birth-and 
death process homogeneous in time. 

The First Entry to the State of Exact Chemical Equilibrium 

Let us consider a reversible first order reaction 

A~B (1) 

with the unit equilibrium constant. The probability that the particle A will be con­
verted to B in a time interval (t, t + At), At -+ 0 is k I1t and the probability of the 
conversion B to A in the same interval is k I1t as well, where k is the constant identical 
with the deterministic rate constant of the isolated reactions A -+ Band B -+ A. 
Let us have N particles A and no particle B in the system at time t = O. We shall 
assume that N is even and large (in laboratory conditions of reaction on macro­
scopic scale, N is of the order of 1020). The composition of the system at a time t > 0 
is determined by the number of particles A at the time t, N ACt-). This quantity is 
an integer-valued random variable whose distribution is Prob{N A(t) = j \ N A(O) = 

= N} = PN,lt). Let us denote the probability density of the first passage times from 
the state N to the state of exact chemical equilibrium by the symbol fN,N/2(t); 
the probability that the system which was in the state N A(O) = N at time t = 0 
will reach the state N A(t) = NI2 at time t to t + I1t, I1t -+ 0, for the first time is 
fN,N/2(t) I1t. Obviously it holds 

(2) 

where PN/2,Nlit - x) = Prob {NA(t - x) = N12\ NA(O) = NI2}. The distribution 
PN,Nlit) for the reaction (1) is given by the relations: 

where 1/11. = 1/2k is the relaxation time of the reaction6
• The exact form of distribu­

tion PN/2,N/2(t) is not suitable for the calculation (a general formula for Prob {N A(t) = 
= j \ N A(O) = i} is derived inS). For N large and t ~ 11rxN, it is possible to approxi-
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mate PNIZ.N/2(t) by the value of maximum of normal density with the mean N/2 
and the variance N[l - exp (-20:t)]/4: 

(4) 

If the operator of the Laplace transform is applied to both sides of Eq. (2) then, 
by using the convolution theorem, we find the Laplace transform , F(p), of the density 

iN.N/2(t) in the form 

F(p) = (N/2) B(p/20: + 1/2, (N - 1)/2)/B(1/2, (N - 1)/2) (p/20: + N/2) , (5) 

where B( ... ) is the beta function (the Euler integral of the first kind)1 and p is the 
complex transform variable. F(p) will be approximated by the leading term of the 
expansion of the right-hand side ofEq. (5) with respect to N: 

F(p) = B(p/20: + 1/2, (N - 1)/2)/8(1 /2, (N - 1)/2). (6) 

An inverse transforms gives the result 

iN,NIZ(t) = [20:/B(1!2 , (N - 1)/2)] exp(-at)(l -- exp(-2at)r - 3 )/Z , (7) 

while B(1}2, (N - 1)/2) ~ (2n}N)1/2 for N large. 

In such a way derived density iN,N/2(t) is normalized and has the shape illustrated 
in Fig. 1. The iN.N/2(t) reaches its maximum value for tmax ~ (1/2a) In Nand 
iN,Ndtmax) ~ a(2/ne)1 /2 does not depend on N. The mean first passage time, te, is 

if = f: tiN.N/2(t) dt ~ (1/2a) (In N + In 2 + C) 

~ (1/2a) (In N + 1'27), (8) 

where C is the Euler constant (C = 0·577 ... ). (The mean If can be derived directly 
from the Laplace transform (5) by using the relation if = -dF(p)/dPlp=o' The result 
shows that approximating (5) by (6) we neglect only an additive term of the order 
of N- 1 in the expression for if). This result is in very good agreement with the previ­
ously derived time needed to attain the band of equilibrium ftuctuations 3

,4 and if 
can be considered as a further possible definition of the time necessary for establishing 
the chemical equilibrium. For N of the order of 1020

, if is approximately 24 times 
longer than the relaxation time. 
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The mean number of elementary reaction events (conversions of the particle A to B 
and B to A) realized in the system till the first entry to the state NI2 is 

n N,N/2 = IfkN ::::: N(ln N + 1'27)/4, (9) 

where (kNtl is the mean time interval per one reaction event. This result may be 
compared with the inequality 

-5 + N(5/2 - 21n 2) < nN,N/2 < N(21n N + 1)/4 (10) 

derived for the Ehrenfest model of diffusion9 (this model and the reaction (1) are 
defined by the same matrix of the transition probabilities 10). 

Returns to the State of Exact Equilibrium 

Let us consider now the same system at a time t ~ 1, when its composition may be 
described by the limiting stationary distributionS 

(11) 

The probability that the system will be outside the state NI2 at a time t and will pass 
to the state NI2 during an interval (t, t + ~s), ~s -+- 0, is (P~/2+14-P~/2 - 1) kN ~s12 
::::: k(2NI1t)1/2 ~s. The probability that the system in the same time interval will not 
pass to the stateNI2is consequently 1 - k(2NI1t)1/2 ~s. The probability that the system 

1'0 

0'5 

20 24 x 

FlO. 1 

Probability Density of First Passage Times 
for the State N/2 

N=1020. X=(1.I, Y=!N/2,N/2(t): 

32 : !N/2,N/2(tmax)' 
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in the interval (t, t + s) will not pass to the state Nj2 and it will pass to this state 
in the interval (t + s, t + S + Lls), Lls --+ 0, is 

lim {k(2Njn)1 /2 [1 - k(2Njn)1 /2 LlsJ/t.S} Lls = 
tl$-+O 

= k(2Njn)1 /2 exp [ -k(2Njn)1 /2 sJ Lls . (12) 

Since the successive returns to the state N j2 represent a process without memory, 
the density (12) is connected with a distribution function, FN/2.N/2(S), of recurrenCe 
times for the state Nj2 (i.e. the intervals between leaving the state Nj2 and sub­
sequent return to this state) by the relation 11

•
12 

k(2Njn)1/2 exp [ -k(2Njn)1 /2 sJ = [1 - FN/2.N/is)Jjsr, (13) 

where sr is the mean recurrence time for the state N j2. From here we find that the 
probability density of recurrence times is 

fN/2.N/2(S) = k(2Njn)1 /2 exp [-k(2N jn)1 /2 sJ (14) 

and the mean recurrence time is 

(15) 

This value is identical with the result derived five years ago by another method 1 0 and, 
on the discrete time scale, it corresponds to the mean number of elementary reaction 
events between subsequent returns to the state Nj2 derived for the Ehrenfest model 
of diffusion 9 • For N of the order of 1020

, the ratio of sr and the relaxation time of reac­
tion is of the order of 10- 10

• 

REFERENCES 

1. Bharucha-Reid A. T.: Elements of the Theory of Markov Processes and Their ApplicatiolZs . 
McGraw-Hill, New York 1960. 

2. McQuarrie D . A.: 1. Appl. Prob. 4, 413 (1967) . 
3. Sole M.: Z . Phys. Chem. (Frankfurt am Main) 105, 9 (1977). 
4. Solc M.: This 10urnal 44, 456 (1979). 
5. Solc M.: This 10urnal 39, 1005 (1974). 
6. lost W. in the book: Physical Chemistry (W. lost, Ed .), Vol. 6A, p. 11. Academic Press, 

New York 1974. 
7. Gradshteyn I. S., Ryzhik I. M.: Table of Integrals. Series alld Products, p. 948 . Academic 

Press, New York 1965. 
8. Ditkin V. A., Kuznecov P. I.: Pfirucka operatoroveho poCtu. Published by Nakladatelstvl 

CSAV, Prague 1954. 

Collection Czechoslov. Chem. Commun. [Vol. 45) [19801 



782 Sole 

9. Kemeny J. G., SneH J. L.: Finite Markov Chains. Van Nostrand, Princeton 1960. 
10. Sole M.: Z . Phys. Chern. (Frankfurt am Main) 83,64 (1973). 
II. Feller W.: An Introduction to Probability Theory and lIs Applications, 2nd Ed., Vol. 2, 

p. 370. Wiley, New York 1971. 
12. Chung K. L. : Period. Math. Hungar. 2, 41 (1972). 

Translated by J . Linek . 

Collection Czechoslov. Chern. Commun. [Vol. 45] [1980] 




